

Internet Protocol Stack in Deep Space: Architecture and Simulation Results

76th International Astronautical Congress (IAC 2025) Sydney, Australia, 29 Sep-3 Oct 2025

Marc Blanchet, Viagenie, marc.blanchet@viagenie.ca Wesley M. Eddy, Aalyria Technologies, wes@aalyria.com

Me

- Internet engineer for 30+ years
- Developed protocols (wrote 17 RFC, wg chair of many IETF wg, IAB member)
- President of Viagenie, consulting for providers, large entreprises, space agencies and manufacturers
- Space related:
 - Involved in space comm/networking since early 2000.
 - IETF delay tolerant networking(dtn) wg co-chair for ~10 years.
 - Member of Interplanetary Network SIG(IPNSIG) Architecture WG and Projects WG
 - Lead of the IOAG LunaNet networking governance working group
 - Designed, implemented and managed the Space Assigned Number Authority(SANA)
 - Instigated the Deep space IP initiative and proposed the IETF tiptop (Taking IP to Other Planets)
 working group, where I'm technical advisor and delegate

Moon Comms Deployment

- Communication/relay orbiters
- Surface assets: habitats, rovers, ...
- Link layers:
 - Surface and orbital: 3GPP (5G/6G) and WIFI
 - Deep space/Orbital: CCSDS
- Earth-Moon delay < 2s

Moon Comms Deployment

With Networking Layer

- All links carry Internet Protocol (IP)
 - Only IP runs over 3GPP and WIFI
- Therefore creating a single layer 3 network end to end
- Why?
 - multiple providers and multiple users/customers
 - sharing common infrastructure
 - Enabling end to end reachability from any to any, using the network
- Note 1: Spacecraft on-board is also an IP network
- Note 2: some relays such as ESA Lunar Pathfinder are forwarding at layer 2, so carries IP

^{*} The Future Lunar Communications Architecture, Report of the Interagency Operations Advisory Group", January 2022 ** LunaNet Interoperability Specification, NASA, February 2025

Mars Comms Deployment

- Same architecture for Mars*
- but different deployment pace

• Earth-Mars delay: 4-22 minutes

* Blue Origin Mars Telecommunications Orbiter, August 2025

* SpaceX update, Elon Musk 29-05-2025

Main Networking Challenges in Deep Space

- Compared to Internet well-connected low delay, space has:
 - Long delays
 - "Simpler to fix": expect to take longer... adjust timers.
 - But cannot expect immediate reaction to events/no fast closed loop
 - Intermittent communications (orbiters going on the other side)
 - "More complicated": from the end to end point of view, the round-trip time (RTT) is large, but more importantly very variable, with jumps due to orbiters going off line of sight
 - A mechanism assuming a relatively stable RTT will just fail.
 - BTW, RTT is not stable on Internet: congestion happens, then recovery kicks in. But immediate/fast reaction is possible. Not in space

- * Space communications has many other challenges, but handled at lower layers
- * more information in <u>draft-ietf-tiptop-usecase</u>

IP Network Layer

- Provides end-to-end(e2e) communication
- Over any link layer below (IP over anything)
- Any length or size of network
- Rely on upper layer (transport) for e2e reliability
 - Transport handles: loss, duplication, reordering, flow control and congestion control
 - And e2e security at transport level
 - Both frees up the application to care about those
- Complexity handled at endpoints, intermediate nodes are simple, therefore fast and hardware accelerated, energy efficient, low memory requirements, no encryption to consume CPU and energy.

HTTP		NTP	DNS		HTTP+TLS	SMTP	SSH	
QUIC ((+TLS)	UDP			-	TCP		
IP								
CCSD	S Space	e Links	802.3-	11/Wifi	3GPP (4G/5	G/6G)		

App (L5-7)
Transport (L4)
Network(L3)
Link (L2)

What needs to be done on IP suite for Deep Space?

- IP and UDP (and HTTP) have no notion of time. Nothing to adapt.
- A. For forwarding devices (like orbiters or space edge) facing intermittent links:
 - Buffer packets temporarily (instead of dropping them) when no route to destination
 - Not needed for:
 - surface or 5-6G/Wifi forwarders/routers
 - Layer 2 orbiters/gateways (if they don't know about IP, just forward based on CCSDS link layers, like Mars orbiters currently)
 - Non-forwarding end nodes
- B. To deliver end to end reliability, configure transport (QUIC) based on a deep space profile
 - Right set of values for timers
 - Intermittence is not directly seen by transport: it is just long and variable delays
 - Do not rely on typical RTT for internal calculations
- C. Applications/Tools/...: asynchronous design, adjust timers appropriately

- TCP not suitable for space
- And everything above TCP
- Use profiled QUIC instead

Does IP work in Deep Space?

Let's put it to test!

Earth to Mars via Orbiter

- Simulation: HTTP/QUIC request and response
- 4 min (240s) one-way delay (Mars and Earth nearest)
 - Side note: <270s max for tc netem delay before 2024-02 fix
- Direct Earth node Mars orbiter Mars asset: no intermittence
- HS = 1RTT Handshake
- Connection close: not needed, can keep connection opened "forever" for additional requests
- Two different QUIC implementations used

Client Wireshark

No	Time	Source	Destination	Protoc	Length Info
	1 0.000000	192.168.40.1	192.168.42.1	QUIC	1242 Initial, DCID=ba7bb2be15d544e9aa76900070e41a9bacaa826e, SCID=dbd14607fed99229, PKN: 0, CRYPTO, PADDING
	2 240.76321	192.168.42.1	192.168.40.1	QUIC	1686 Handshake, DCID=dbd14607fed99229, SCID=bc54d768409abe435a4c5c4904abe9788b088cc9, PKN: 2, CRYPT0
	3 480.80146	192.168.40.1	192.168.42.1	QUIC	1242 Handshake, DCID=bc54d768409abe435a4c5c4904abe9788b088cc9, SCID=dbd14607fed99229, PKN: 0, ACK, CRYPTO, PADDING
	4 480.80160	192.168.40.1	192.168.42.1	QUIC	276 Protected Payload (KP0), DCID=bc54d768409abe435a4c5c4904abe9788b088cc9, PKN: 0, NCI, NCI, NCI, NCI, NCI, NCI
	5 480.80160	192.168.40.1	192.168.42.1	QUIC	100 Protected Payload (KP0), DCID=bc54d768409abe435a4c5c4904abe9788b088cc9, PKN: 1, STREAM(0)
	6 721.48673	192.168.42.1	192.168.40.1	QUIC	803 Protected Payload (KP0), DCID=dbd14607fed99229, PKN: 3, ACK, NCI, NCI, NCI, NCI, DONE, CRYPTO, STREAM(0)
	7 961.60977	192.168.40.1	192.168.42.1	QUIC	86 Protected Payload (KP0), DCID=bc54d768409abe435a4c5c4904abe9788b088cc9, PKN: 2, ACK
	8 961.60981	192.168.40.1	192.168.42.1	QUIC	93 Protected Payload (KP0), DCID=bc54d768409abe435a4c5c4904abe9788b088cc9, PKN: 3, ACK, CC

What about intermittence?

Such as orbiter with blackout periods

Earth to Mars with Intermittence

- IP packets stored during intermittence
- Intermittence: 1h, 2 times
- 4 min. one-way delay
- Send 1 request every 15 minutes
 - 20 times: aka 20 requests, 20 responses

Earth to Mars with Intermittence

Longer Delays. Possible?

An HTTP Request to Voyager!

(In simulation)

- 18 hours (64800s) one-way delay
- Direct link, Earth and Voyager nodes
- HTTP over configured QUIC
- Full QUIC flow: connection establishment (1,2), request and response (4,5), connection close(7,8). Additional features (3,6)

	Time	Source	Destination	Protocol	Lengtr Info	
1	. 0.000000	192.168.65.33	192.168.65.25	QUIC	1242 Initial	, DCID=d61b8e047f
2	64800.438656	192.168.65.25	192.168.65.33	QUIC	1380 Handsha	ke, DCID=2f26ef8a
3	129600.8077	192.168.65.33	192.168.65.25	QUIC	1242 Handsha	ke, DCID=bf92a7a2
4	129600.8086	192.168.65.33	192.168.65.25	QUIC	200 Protect	ed Payload (KP0),
5	194401.1215	192.168.65.25	192.168.65.33	QUIC	691 Protect	ed Payload (KP0)
6	259201.4231	192.168.65.33	192.168.65.25	QUIC	79 Protect	ed Payload (KP0),
7	259201.4236	192.168.65.33	192.168.65.25	QUIC	96 Protect	ed Payload (KP0),
8	259201.4245	192.168.65.33	192.168.65.25	QUIC	86 Protect	ed Payload (KP0),

What about packet loss?

Let's try 5% packet loss over very long delay

Delay of 24 hours and 5% packet loss

35 1641600.000000

36 1641600.000000

37 1728000.000000

38 1728000.000000

39 1814400.000000

40 1814400.000000

41 1900800.000000

42 1900800.000000

43 1987200.000000

44 1987200.000000

- One way 24 hours delay(86400s), packet loss 5%, 10 times repeat HTTP request and response in the same connection
- Total time: 1987200s
 - same as without packet loss, since loss was recovered using the next packets
- Client data packets sent: 20, 3087 bytes
- Server data packets sent: 22, 12313 bytes
 - Server packets dropped: 2
 - (by the network simulation)
- Conclusion: QUIC recovered successfully and all data were properly sent reliably

61 Protected Payload (KP0), PKN: 16, ACK_ECN

61 Protected Payload (KP0), PKN: 17, ACK_ECN

61 Protected Payload (KP0), PKN: 18, ACK_ECN

61 Protected Payload (KP0), PKN: 19, ACK_ECN

61 Protected Payload (KP0), PKN: 20, ACK_ECN

1074 Protected Payload (KP0), PKN: 19, STREAM(36)

57 Protected Payload (KP0), PKN: 20, ACK_ECN, CC

58 Protected Payload (KP0), PKN: 21, ACK_ECN, CC

1074 Protected Payload (KP0), PKN: 17, STREAM(32)

64 Protected Payload (KP0), PKN: 18, STREAM(36)

88.88.88.88 1.1.1.1

88.88.88.88 1.1.1.1

88.88.88.88 1.1.1.1

88.88.88.88 1.1.1.1

88.88.88.88 1.1.1.1

88.88.88.88 1.1.1.1

88.88.88

88.88.88

88.88.88

88.88.88

1.1.1.1

1.1.1.1

1.1.1.1

1.1.1.1

QUIC

What about Network Management? QoS? Streaming?

Network Services

- Network Management: use SNMP/UDP (IETF deprecated) or NETCONF-RESTCONF/QUIC
- QoS: use the whole IP QoS/TE toolkit; apply based on source/destination addresses, diffserv marking, port/service, flow label, ...
- Naming: use DNS locally (on celestial body network)
- Emergency messaging: may use terrestrial framework (ECRIT)
- Time distribution: use NTP
- Media/Streaming: many choices: RTP, HTTP, MoQ, ...

Conclusion and More Information

- The Internet Protocol Suite is being deployed in deep space by:
 - Temporarily buffering IP packets in forwarders facing intermittence
 - Configuring QUIC transport with a space profile or use UDP
 - For applications, modifying timeouts appropriately and apply asynchronous design
- Advantages: much lower costs, lower risks, proven technology, faster to develop, secure,
- Who is deploying IP to Moon? Nokia, KDDI, China, LNIS(NASA, ESA, JAXA, Lunar service providers, ...)
- For more information:
 - Deep Space IP initiative: https://deepspaceip.github.io
 - QUIC simulation engine: https://github.com/aochagavia/quinn-workbench
 - IETF tiptop working group: https://datatracker.ietf.org/group/tiptop/about/
- Contact information:
 - Marc Blanchet, Viagenie, marc.blanchet@viagenie.ca