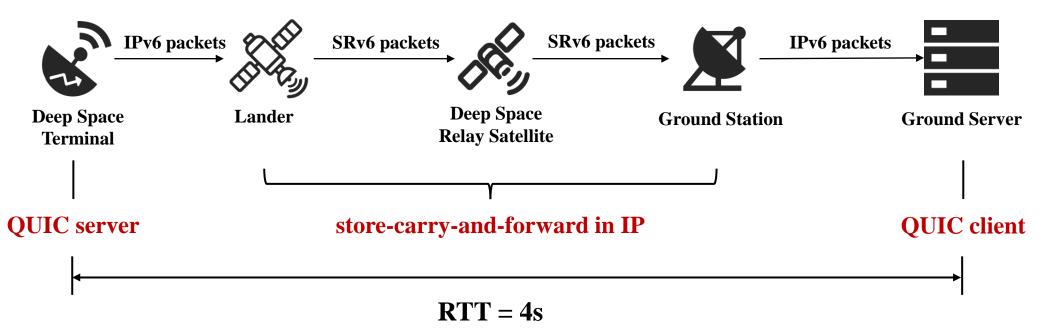
IPv6+ Network Architecture for Deep Space

Yihan Zhu, Jun Liu, Kanglian Zhao School of Electronic Science And Engineering Institute of Space Terrestrial Intelligent Networks Nanjing University, P. R. China

2024.11.04

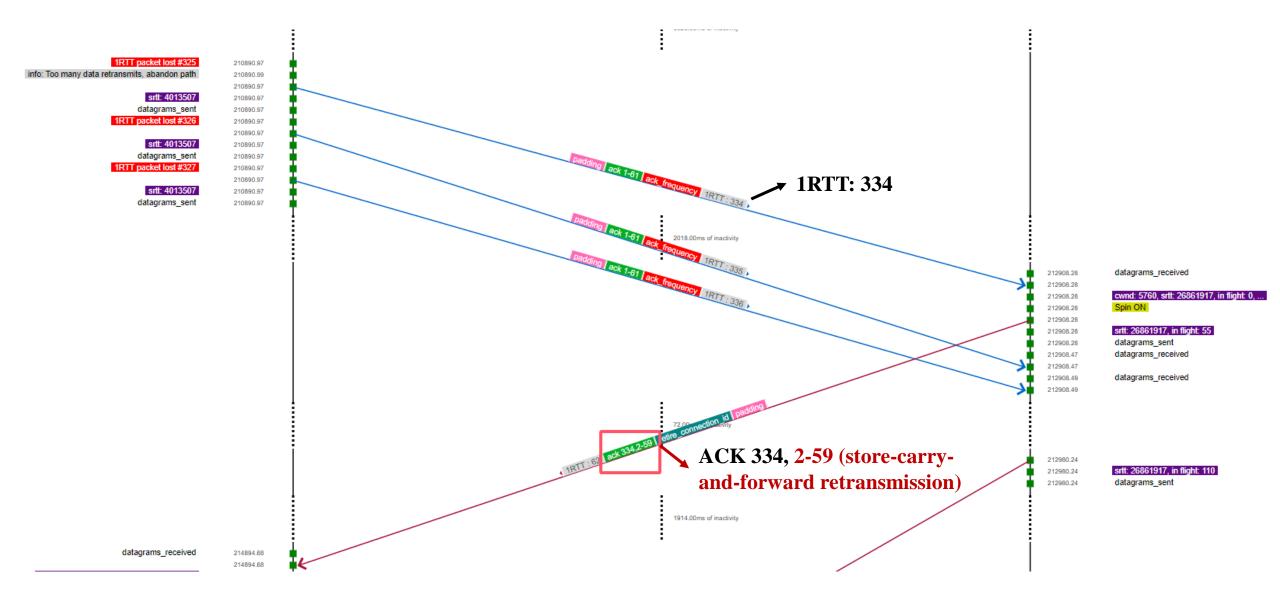
Introduction


- At last IETF 120 Side meeting, we introduced a new **SRv6 based store-carry-and-forward networking** for deep space, and got some valuable results after our prototype validation. First, we will review the main ideas and conclusions.
- At this meeting, we will give an whole **IPv6+ network architecture** for deep space.
- First, we will introduce our test of QUIC and SRv6 based store-carry-and-forward interoperation;
- Next, we will present a **CGR-based routing** approach to generate an SRv6 segment list for link handover;
- At last, we will give the **new scenarios for next-generation deep space networks** and we will give the design selection why we choose IPv6+ network architecture for deep space.

Review: DTN BP/LTP vs Deep space IP

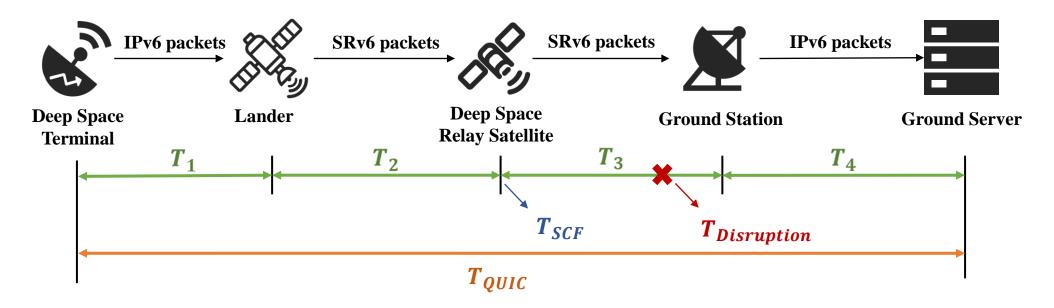
Target	DTN Solution	IP Solution	
Hop-by-hop transmission	√ (BP)	$\sqrt{(\mathrm{SRv6})}$	
Store-Carry-and-Forward	√ (BP)	$\sqrt{(\text{SRv6 End.XS})}$	
Confirmation retransmission	$\sqrt{(LTP)}$	$\sqrt{(\text{ICMP})}$	
Adaptive Routing	$\sqrt{(CGR)}$	$\sqrt{(\text{TVR+CGR, FRR})}$	
Distinguishing between reliable and unreliable transmission	$\sqrt{(\text{LTP Red and Green segments})}$	$\sqrt{(ACL, Link config)}$	
Parallel transfer	$\sqrt{(\text{LTP Session})}$	$\sqrt{(\text{ECMP, Multiple-threads})}$	
Socket interface for APP	X (under development)		
Forwarding performance	Packet processing is complex, too many Queues, larger packet headers	Mathematical Better (Packet Processing is simple, same AQM as Standard IP)	

SRv6 based IP and DTN have consistent functions, making interconnection easier.


Test of QUIC and SRv6 based store-carry-and-forward interoperation

Purpose: In scenarios with link disruptions, files can be successfully delivered relying on the IP layer's store-carry-and-forward paradigm, without depending on the QUIC timeout retransmission mechanism.

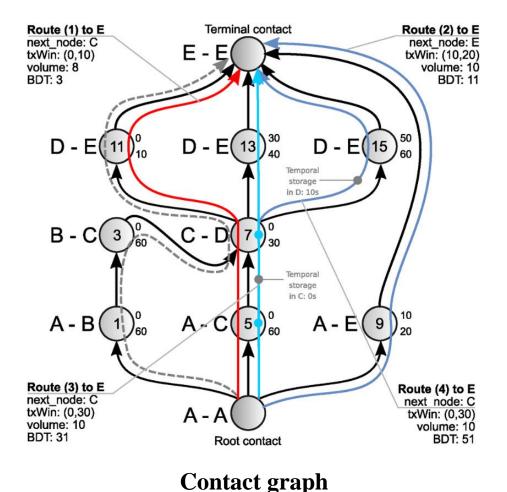
- · max_idle_timeout: 10min
- · initial_rtt, initial_retransmit_timer: 4s
- · large_retransmit_timer: 16s
- · congestion algorithm: BBR


Test of QUIC and SRv6 based store-carry-and-forward interoperation

Test of QUIC and SRv6 based store-carry-and-forward interoperation

			Voit 11, 110000000 1	
	125 10.464882913 fc04::2	fc00:1::1	QUIC 117 Protected F	
25s: Link down 🔶	126 17.884423358 fc04::2	fc00:1::1	QUIC 1502 Protected F	
	25.303725575 fc04::2	fc00:1::1	QUIC 1462 Protected F	
235. Link down	128 91.817233562 fe80::1e22:2f4d:5bb7:9daa	ff02::fb	MDNS 107 Standard qu	
	129 91.817254431 fc02::2	ff02::fb	MDNS 107 Standard qu	
	130 91.817258080 172.16.158.135	224.0.0.251	MDNS 87 Standard qu	
	131 91.817416534 172.16.158.134	224.0.0.251	MDNS 87 Standard qu	
	132 208.906118471 fe80::e2f1:d796:b044:4532	ff02::fb	MDNS 107 Standard qu	
	133 209.010413447 172.16.158.132	224.0.0.251	MDNS 87 Standard qu	
	134 209.035770170 172.16.158.131	224.0.0.251	MDNS 87 Standard qu	
	135 209.054124580 172.16.158.130	224.0.0.251	MDNS 87 Standard qu	
210g. Link un	4 135 209-034224980 172.10.136.130	fc04::2	QUIC 213 Protected F	
210s: Link up	137 210.140966355 fc00:1::1	fc04::2	QUIC 213 Protected F	
	137 210.140360555 1000:1::1 138 210.141139226 fc00:1::1	fc04::2	OUIC 213 Protected F	
212a First & CV north	130 210.141139220 100011:11	fc00:1::1	•	
212s: First ACK reply			QUIC 117 Protected F	
	140 212.214251906 fc04::2	fc00:1::1	QUIC 117 Protected F	
	141 214.144506417 fc00:1::1	fc04::2	QUIC 1390 Protected F	
	142 214.144733640 fc00:1::1	fc04::2	QUIC 213 Protected F	
	143 214.144943374 fc00:1::1	fc04::2	QUIC 213 Protected F	
	> Frame 136: 213 bytes on wire (1704 bits), 213 bytes cap	tured (1704 bits) on interface ens38, id 0		
Ethernet II, Src: VMware_12:22:b5 (00:0c:29:12:22:b5), Dst: VMware_ec:d5:f4 (00:0c:29:ec:d5:f4)				
> Internet Protocol Version 6, Src: fc00:1::1, Dst: 2001:db8:300:1:300:0:1:14f				
Internet Protocol Version 6, Src: fc00:1::1, Dst: fc04::2				
✓ User Datagram Protocol, Src Port: 4433, Dst Port: 4434				
	Source Port: 4433			
	Destination Port: 4434		ard retransmission	
Length: 63				
	Checksum: 0x4986 [unverified]			
[Checksum Status: Unverified]				
	[Stream index: 0]			
	✓ [Timestamps]			
	[Time since first frame: 210.140769688 seconds]			
	[Time since previous frame: 184.837044113 seconds]			
	UDP payload (55 bytes)			
	V QUIC IETF			
	QUIC Connection information			
	[Connection Number: 0]			
	[Packet Length: 55]			
	> QUIC Short Header DCID=9d6771d42d9d18c6			
	Remaining Payload: be3a1278ea268829c646b595fcc9ff728	161887991904ca911b13fce91f03b4440aea29d3d5	a9e7eebaddf889b62	
······································				

Disruption Time Modelling for layers Interoperations

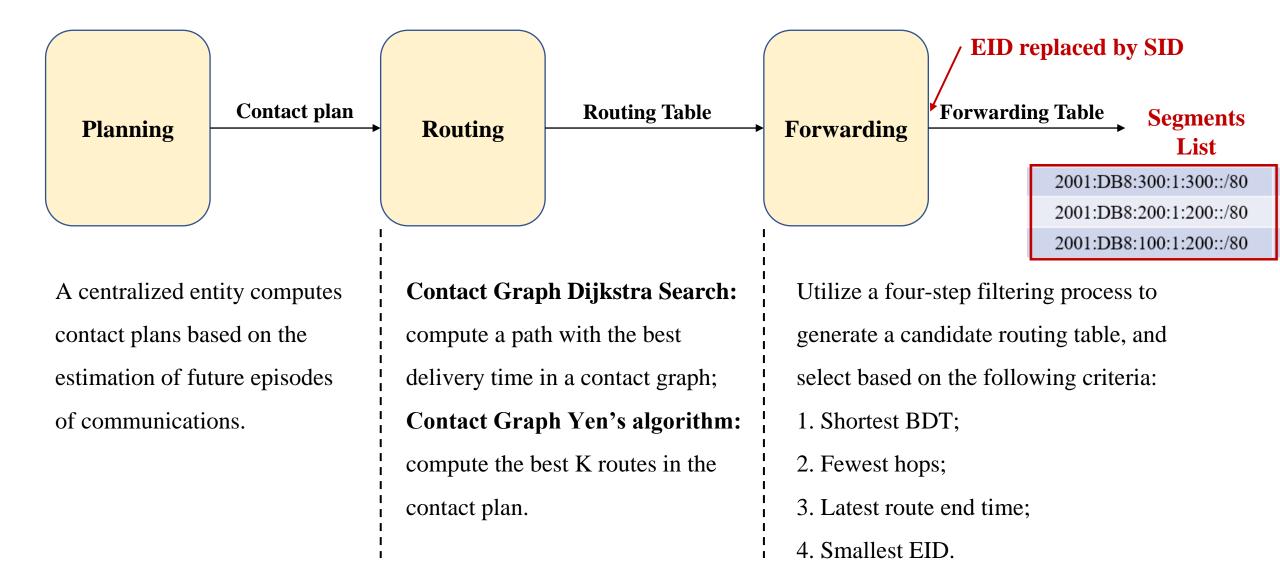

Problem: QUIC retransmissions over a store-carry-and-forward mechanism may result in invalid **duplicate packets**. How can we reconcile the reliability relationship between these two?

$$T_{QUIC} \ge T_1 + T_2 + T_3 + T_4 + T_{Disruption} + T_{SCF}$$

· Dynamically Adjust QUIC Retransmission Timer

CGR based routing to create SRv6 segment list

In deep space networks, the communication windows (contacts) between nodes are **pre-planned**, allowing the optimal transmission paths between any nodes to be theoretically inferred from these contact schedules.



• Node: a contact in the contact plan that allows data transmission between two nodes;

Link: the necessary storage time for data at the sending node while waiting for the next contact transmission.
Every route includes:

- **Temporal storage:** data storage time at the node;
- **txWin (transmission window):** [the start time of the first hop, the earliest end time among the contacts traversed]
- volume = (end-start) * rate;
- **BDT** (**best delivery time**): the earliest time at which the destination node can be reached.

CGR based routing to create SRv6 segment list

New scenarios for next-generation deep space networks

Earth-Moon Communication

Future Lunar Communication

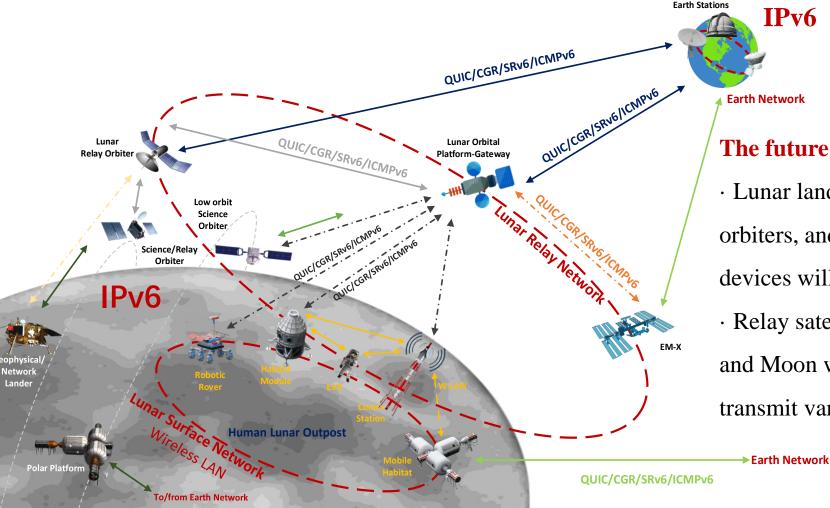
With the continuous development of manned lunar exploration programs and deep space exploration, the scale and applications of deep space networks are increasingly resembling **the IP-centric internet**:

• The manned lunar exploration network involves not only remote sensing data transmission addressed by DTN;

• Also includes **astronaut-to-ground** communication, **human-machine** communication, and **machine-to-machine** communication within lunar sensor networks.

Why IPv6+ network architecture for deep space

SRv6 technology enables IPv6 networks to be programmable, allowing them to meet more complex and flexible communication requirements. The **design philosophy** for next-generation deep space network architecture includes:


- Support for Large Networks: The model is closer to an IP-centric terrestrial internet;
- · Scalability: Supports dynamic routing, allowing terminals and network nodes to join and leave freely;

• **Open Interconnectivity:** Forms a seamless interstellar network that connects lunar, Martian, and Venusian networks with terrestrial networks, sharing applications of the terrestrial internet;

- **Resilience:** Addresses reliability issues, enabling rapid rerouting capabilities;
- **Programmability:** Equipped with SDN capabilities, supporting differentiated service provisioning and QoS guarantees, allowing for flexible service policies and traffic engineering;
- · Simplified Protocol Stack: Enhances network efficiency and simplifies network operations;
- Automation: Improves network operation efficiency.

IPv6+ Network Architecture for Deep Space = **IPv6 + SRv6 + ICMPv6 + QUIC + CGR**

IPv6+ Networking : the next-generation deep space networks

The future manned lunar exploration network :

IPv6

• Lunar landers, rovers, intelligent robots, astronauts, orbiters, and various remote sensing and telemetry devices will be interconnected using **IPv6**;

• Relay satellites and ground stations between Earth and Moon will utilize an enhanced **QUIC+SRv6** to transmit various data.