CoAP in space draft-gomez-core-coap-space-01

Intended Status: Informational

Carles Gomez

Universitat Politècnica de Catalunya Sergio Aguilar Sateliot

IETF 120 Vancouver, deepspace side-meeting, July 2024

Extended scope

- Updated abstract:
 - Spatial environments characterized by long delays and intermittent communication opportunities
 - Deep space
 - Some LEO satellite-based scenarios
- Terminology
 - Delay-tolerant (spatial) environments
 - Deep space mentioned as an example when suitable/possible

1. Introduction

- Non-Terrestrial Networks (NTN):
 - Sparse LEO satellite constellations that provide direct connectivity to IoT devices
 - Discontinuous coverage
 - IoT device needs to wait until visited by a satellite
 - Satellite needs to support Store & Forward (S&F)
 - Perhaps no immediate link with a ground station
 - Perhaps no second satellite available
 - Enables delay-tolerant communication
 - Note: extensions for S&F operation being standardized by 3GPP in Rel. 19 [TR23.700-29]

4. Caching

- RFC 7252: "CoAP endpoints MAY cache responses in order to reduce the response time and network bandwidth consumption on future, equivalent requests"
 - Suitable for delay-tolerant space scenarios
 - Needs to be adapted to the scenario, considering latency
- Cached response can be reused if "fresh"
 - Origin server determines when not fresh via Max-Age option
 - By default, Max-Age = 60 seconds
 - Maximum possible Max-Age value = 2³² 1 seconds (~136 years)
 - Delay-tolerant environments: if a response is intended to be cacheable, Max-Age needs to be set:
 - According to the expected latency from origin server to caching CoAP endpoint
 - If it makes sense that the response will still be fresh after such delay
 - If a response is not fresh, a CoAP endpoint will not store it

5. Observe

- RFC 7641:
 - If the time between the two last notifications received is greater than 128 seconds:
 - Then the last one received is also the latest sent by the server.
 - 128 seconds, chosen as greater than default MAX_LATENCY (100 seconds)
- In delay-tolerant environments (e.g., deep space), the duration needs to be chosen as a value greater than the MAX_LATENCY of the scenario

7. CoAP group communication

- A client sends multicast CoAP request messages over UDP/IP multicast as default transport
- Each server in the destination group sends a response message back to the client
 - A response can be suppressed
- [I-D.ietf-core-groupcomm-bis]:
 - Minimum time between reuse of Token values for different group requests, MIN_TOKEN_REUSE_TIME, to be greater than: MIN_TOKEN_REUSE_TIME = (NON_LIFETIME + MAX_LATENCY + MAX_SERVER_RESPONSE_DELAY)
 - Using the default CoAP parameters, Token reuse time > 250 seconds plus MAX_SERVER_RESPONSE_DELAY (250 seconds suggested)
- MIN_TOKEN_REUSE_TIME in delay-tolerant spacial scenarios:
 - Needs to be adjusted to the scenario

8. Security

- Group OSCORE protocol used to secure CoAP group communication [I-D.ietf-core-oscore-groupcomm]
 - Initial CoAP group communication spec [RFC 7390] assumed that CoAP over IP multicast was not secured

- Protection against replay attacks:
 - OSCORE uses by default an anti-replay sliding window, window size of 32 [RFC 8613]
 - If greater window size needed (e.g., due to high latency), it needs to be known by both sender and receiver at security context establishment

Thanks! Questions? Comments?

Carles Gomez

Universitat Politècnica de Catalunya

Sergio Aguilar

Sateliot

IETF 120 Vancouver, deepspace side-meeting, July 2024